metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Sandrine Vincendeau, Vincent Collière and Christophe Faulmann*

Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, 31077 Toulouse Cedex, France

Correspondence e-mail: faulmann@lcc-toulouse.fr

Key indicators

Single-crystal X-ray study T = 180 K Mean σ (C–C) = 0.009 Å Disorder in main residue R factor = 0.035 wR factor = 0.097 Data-to-parameter ratio = 12.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Cp₂Ti(dddse): a well known precursor for Se-containing donors

Bis(η^5 -cyclopentadienyl)[5,6-dihydro-1,4-dithiine-2,3-diselenolato(2–)- κ^2 Se,Se']titanium(IV), [Ti(C₅H₅)₂(C₄H₄S₂Se₂)], is isostructural with the all-sulfur derivative Cp₂Ti(dddt) [Guyon *et al.* (1994). *Bull. Soc. Chim. Fr.* **131**, 217–226] (dddt^{2–} = 5,6-dihydro-1,4-dithiine-2,3-dithiolate). There are two molecules in the asymmetric unit, and one ethylene group of the dddse^{2–} ligand is found to be disordered in one of them. As in Cp₂Ti(dddt), the TiSe₂C₂ ring is folded along the Se···Se axis by 49.75 (3) and 53.29 (3)° in the two independent molecules.

Comment

The organic donor BETS [bis(ethylenedithio)tetraselenafulvalene], (4), has a central role in interesting conductive and magnetic compounds, exhibiting unusual physical properties (Brossard *et al.*, 1998; Kobayashi *et al.*, 2000; Uji *et al.*, 2001). One of the key steps of the synthesis of BETS (Kato *et al.*, 1991; Courcet *et al.*, 1998) is the isolation of the title compound, (2), which reacts easily with triphosgene to give 4,5-ethylenedithio-1,3-diselenol-2-one, (3). This latter provides BETS, (4), on coupling with triethylphosphite.

We report here the crystal structure of Cp₂Ti(dddse) (ddse is 5,6-dihydro-1,4-dithiine-2,3-diselenolate), and compare it with the sulfur analogue, Cp₂Ti(dddt), whose crystal structure has been reported in 1994 (Guyon et al., 1994). These two compounds are isostructural. The asymmetric unit (Fig. 1) contains two independent Cp₂Ti(dddse) molecules (A and B) in general positions. The main difference between them is the presence of a disordered terminal ethylene group in molecule B. This disorder is probably due to the relative orientation of the B molecule with respect to the A molecule. Indeed, the - CH_2-CH_2 – group of molecule A lies between a Cp ring of another molecule A and the $Se_2C_2S_2$ plane of an adjacent B molecule (see Fig. 2). Only three short contacts (smaller than the sum of the van der Waals radii; Pauling, 1960) exist between the H atoms of this ethylene group and molecules A and B (see Table 1), leading to a stable and favourable

Received 28 March 2003 Accepted 14 April 2003 Online 23 April 2003

© 2003 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 3

Figure 1

Atomic numbering scheme for the asymmetric unit of $Cp_2Ti(ddse)$, with 50% probability displacement ellipsoids; one of the two disordered groups is shown in light grey.

Projection on to the bc plane, showing the short contacts (dotted lines) between the A and B molecules (B is depicted with C3B and C4B as the ethylene group).

conformation. By contrast, the H atoms of the ethylene group of molecule *B* point directly towards the Cp ring of the closest *B* molecule (Fig. 2), with six short C···H contacts (Table 1). These contacts are possibly destabilizing. As a consequence, the ethylene group flips to another position (denoted C3*B*// C4*B*'). This new position of the ethylene group leads also to the occurrence of short contacts with neighbouring *A* and *B* molecules (Fig. 3 and Table 1). All of them, but one, also involve contacts with Cp rings. As a consequence, whatever the position, the ethylene groups of the *B* molecule are always in contact with the Cp rings of the adjacent molecules. In spite of this disorder, both $-CH_2-CH_2-$ groups adopts a *trans* configuration, whereas both *trans* and eclipsed configurations

Structure of $Cp_2Ti(ddse)$, showing the short contacts between the A and B molecules (B is depicted with C3B' and C4B' as the ethylene group).

were reported for Cp₂Ti(dddt), without any disorder of the ethylene group. It should be noted here that, in Cp₂Ti(dddt), a disorder should also exist in the *B* molecule, since the equivalent displacement parameters of the C atoms are very large [0.158 (6) and 0.116 (4) Å²], and the intramolecular distance between C3*B* and C4*B* (1.267 Å) is too short for a single C–C bond. The presence of this disorder would then 'remove' the eclipsed configuration. As a consequence, Cp₂Ti(dddse) and Cp₂Ti(dddt) exhibit the same structural features. This is also supported by the folding angle of the TiSe₂C₂ ring along the Se···Se line in molecules *A* and *B* [49.75 (3) and 53.29 (3)°, respectively]. Substitution of S for Se does not affect the value of the folding angles; these are almost identical in Cp₂Ti(dddt) [49.2 (1) and 51.2 (1)°].

Experimental

The title compound was prepared as a powder following the procedure of Kato *et al.* (1991). Dissolution of this powder in $CDCl_3$ (initially performed for a NMR characterization) and subsequent crystallization afforded crystals suitable for X-ray analysis.

Crystal data	
$[Ti(C_5H_5)_2(C_4H_4S_2Se_2)]$	$D_x = 2.008 \text{ Mg m}^{-3}$
$M_r = 452.18$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/c$	Cell parameters from 8000
a = 12.7474 (8) Å	reflections
b = 10.9055 (10) Å	$\theta = 2.8-26^{\circ}$
c = 21.5888 (13) Å	$\mu = 5.70 \text{ mm}^{-1}$
$\beta = 94.648 \ (7)^{\circ}$	T = 180 (2) K
$V = 2991.3 (4) \text{ Å}^3$	Plate, dark green
Z = 8	$0.33 \times 0.25 \times 0.04 \text{ mm}$

Data collection

Stoe IPDS diffractometer	4603 reflections with $I > 2\sigma(I)$
φ scans	$R_{\rm int} = 0.055$
Absorption correction: analytical	$\theta_{\rm max} = 26.1^{\circ}$
(Alcock,1970)	$h = -15 \rightarrow 15$
$T_{\min} = 0.341, T_{\max} = 0.765$	$k = -13 \rightarrow 13$
26415 measured reflections	$l = -26 \rightarrow 26$
5732 independent reflections	

 $w = 1/[\sigma^2(F_o^2) + (0.0532P)^2]$

+ 4.9237P] where $P = (F_o^2 + 2F_c^2)/3$

 $(\Delta/\sigma)_{\rm max} = 0.001$

 $\Delta \rho_{\rm max} = 0.76 \ {\rm e} \ {\rm \AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.76 \ {\rm e} \ {\rm \AA}^{-3}$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.035$ $wR(F^2) = 0.097$ S = 1.055732 reflections 449 parameters H atoms treated by a mixture of independent and constrained refinement

Table 1

Short contacts (Å) between molecules A and B in $Cp_2Ti(dddse)$.

$H4B2 \cdot \cdot \cdot C7B^{i}$	2.827 (5)	C1 <i>B</i> ···H3 <i>A</i> 1	2.89 (6)
$H4B2 \cdot \cdot \cdot C6B^{i}$	2.790 (5)	H3B3···S3A ⁱⁱⁱ	2.921 (1)
$H4B2 \cdot \cdot \cdot C5B^{i}$	2.823 (5)	$H3B4 \cdot \cdot \cdot C12B^{iv}$	2.659 (6)
$H4B2 \cdot \cdot \cdot C8B^{i}$	2.873 (5)	$H4B3 \cdot \cdot \cdot C6B^{i}$	2.754 (5)
$H4B2 \cdot \cdot \cdot C9B^{i}$	2.8595 (5)	$H4B3 \cdot \cdot \cdot C5B^{i}$	2.806 (5)
$H3B2 \cdot \cdot \cdot C6B^{i}$	2.900 (5)	$H4B4 \cdot \cdot \cdot C14A^{ii}$	2.789 (8)
$H4A2 \cdot \cdot \cdot C12A^{ii}$	2.90 (8)	$H4B4 \cdot \cdot \cdot H14A^{ii}$	2.3 (1)
Se1B···H4A1	3.05 (7)	$C4B' \cdots C14A^{ii}$	3.38 (2)
Symmetry codes: (i)	$x, \frac{3}{2} - y, z - \frac{1}{2};$ (ii)	$x, \frac{1}{2} - y, z - \frac{1}{2};$ (iii) $-x$	z, 1 - y, 1 - z; (iv)
$-x_{2} - y_{1} - z_{2}$			

H atoms were found in a difference Fourier map, except those belonging to the disordered ethylene groups of the dddse ligand. These latter were placed geometrically at 0.99 Å, riding on the carrier C atom, $U_{\rm iso} = 1.2U_{\rm eq}$ of the carrier C atom. H atoms on C12A and C13A were also placed geometrically and refined as riding. Other H atoms were refined freely with individual $U_{\rm iso}$ values.

Data collection: *IPDS Software* (Stoe & Cie, 1996); cell refinement: *IPDS Software*; data reduction: *IPDS Software*; program(s) used to solve structure: *SIR*97 (Altomare *et al.*, 1999); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *CAMERON* (Watkin *et al.*, 1996) and *ORTEP*3 (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

L. Pilia is acknowledged for his help during the preparation of BETS.

References

- Alcock, N. W. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall and C. P. Huber, pp. 271–278. Copenhagen: Munksgaard.
- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Burla, M. C., Polidori, G., Camalli, M. & Spagna, R. (1999). SIR97. Universities of Bari, Perugia and Rome, Italy.
- Brossard, L., Clerac, R., Coulon, C., Tokumoto, M., Ziman, T., Petrov, D. K., Laukhin, V. N., Naughton, M. J., Audouard, A., Goze, F., Kobayashi, A., Kobayashi, H. & Cassoux, P. (1998). *Eur. Phys. J. B*, **1**, 439–452.
- Courcet, T., Malfant, I., Pokhodnia, K. & Cassoux, P. (1998). New J. Chem. 22, 585–589.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Guyon, F., Lenoir, C., Fourmigué, M., Larsen, J. & Amaudrut, J. (1994). Bull. Soc. Chim. Fr. 131, 217–226.
- Kato, R., Kobayashi, H. & Kobayashi, A. (1991). Synth. Met. 42, 2093-2096.
- Kobayashi, H., Kobayashi, A. & Cassoux, P. (2000). Chem. Soc. Rev. 29, 325– 333.
- Pauling, L. (1960). The Nature of the Chemical Bond, 3rd ed., p. 260. Ithaca: Cornell University Press.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Stoe & Cie (1996). *IPDS Software*. Version 2.86. Stoe & Cie, Darmstadt, Germany.
- Uji, S., Shinagawa, H., Terashima, T., Yakabe, T., Terai, Y., Tokumoto, M., Kobayashi, A., Tanaka, H. & Kobayashi, H. (2001). *Nature (London)*, **410**, 908–910.
- Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.